Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 335: 139080, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37263510

RESUMO

Important functions of constructed wetland related to biogeochemical processes are mediated by soil microbes and low-temperature damage is the main limiting factor for microbes in winter. However, the response thresholds for active microbial community and enzyme activities to continuous decreases in temperature remain unclear. In this study, total 90 soil samples were collected every week over a 6-week period to track the dynamics of four enzymes involved in cycles of C, N, P and active bacterial community as field soil temperature decreased continuously from 6.62 °C to 0.55 °C. Enzyme activity changed suddenly when the temperature decreased to 4.83 °C, the nitrite reductase activity reduced by 36.2%, while alkaline phosphatase activity is increased by 396%. The cellulase and urease were only marginally influenced by cold stress. Decreased nitrite reductase activities corresponded with loss of nir-type denitrifiers important for nitrite reduction. For cold stress, N-related bacteria were sensitive species. Whereas increased alkaline phosphatase activity may be due to the fact that P-related bacteria were opportunistic species. Key functional taxa connected with degradation of cellulose promoted species coexistence and microbial network stability. The lower and upper temperature thresholds for community change were 4.85 °C and 6.30 °C, respectively. Collectively, these results revealed that microbial taxa involved in C, N and P cycling respond differently to continuous decreases in temperature and higher than 4.85 °C is an ideal environment to prevent loss of microbial diversity and functions in winter, providing a scientific reference for the targeted isolation and cultivation of key microbial taxa in rhizosphere soil and adjusting temperature range to improve the purification capacity of wetlands during low temperature periods.


Assuntos
Microbiota , Áreas Alagadas , Temperatura , Fosfatase Alcalina/metabolismo , Bactérias/metabolismo , Solo/química , Nitrito Redutases/metabolismo , Microbiologia do Solo
2.
Front Microbiol ; 14: 1127958, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910212

RESUMO

Introduction: Root-associated microorganisms promote plant growth and provide protection from stresses. Halophytes are the fundamental components maintaining ecosystem functions of coastal salt marshes; however, it is not clear how their microbiome are structured across large spatial scales. Here, we investigated the rhizosphere bacterial communities of typical coastal halophyte species (Phragmites australis and Suaeda salsa) in temperate and subtropical salt marshes across 1,100 km in eastern China. Methods: The sampling sites were located from 30.33 to 40.90°N and 119.24 to 121.79°E across east China. A total of 36 plots were investigated in the Liaohe River Estuary, the Yellow River Estuary, Yancheng, and Hangzhou Bay in August 2020. We collected shoot, root, and rhizosphere soil samples. the number of pakchoi leaves, total fresh and dry weight of the seedlings was counted. The soil properties, plant functional traits, the genome sequencing, and metabolomics assay were detected. Results: The results showed that soil nutrients (total organic carbon, dissolved organic carbon, total nitrogen, soluble sugars, and organic acids) are high in the temperate marsh, while root exudates (measured by metabolite expressions) are significantly higher in the subtropical marsh. We observed higher bacterial alpha diversity, more complex network structure, and more negative connections in the temperate salt marsh, which suggested intense competition among bacterial groups. Variation partitioning analysis showed that climatic, edaphic, and root exudates had the greatest effects on the bacteria in the salt marsh, especially for abundant and moderate subcommunities. Random forest modeling further confirmed this but showed that plant species had a limited effect. Conclutions: Taken together, the results of this study revealed soil properties (chemical properties) and root exudates (metabolites) had the greatest influence on the bacterial community of salt marsh, especially for abundant and moderate taxa. Our results provided novel insights into the biogeography of halophyte microbiome in coastal wetlands and can be beneficial for policymakers in decision-making on the management of coastal wetlands.

3.
Sci Total Environ ; 818: 151673, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34793796

RESUMO

Salt marshes are highly productive intertidal wetlands located in temperate climatic zones, in which marine-to-terrestrial transition significantly influences microbial life. Numerous studies revealed the important coupling relationship between microbial diversity and ecosystem functions in terrestrial ecosystems, however, the importance of microbial diversity in maintaining soil functions in coastal ecosystems remains poorly understood. Here, we studied the shifts of microbial communities and soil multifunctionality (SMF; nine functions related with C, N and P cycling) along a vegetation gradient in a salt marsh ecosystem and investigated the microbial diversity - ecosystem function relationship. The aboveground vegetation shifted from mud flat (MF) to Scirpus triqueter (SM) and then Phragmites australis (PA) with increasing distance away from the sea. Average approach showed that the SMF was much higher in halophytes covered zones including SM and PA than in MF. Structural equation model (SEM) analysis confirmed that vegetation was an important predictor on SMF besides moisture and organic carbon. Linear regression and multiple threshold methods showed that in MF and SM zones, fungal rather than bacterial richness was significantly and positively correlated with SMF, while in the PA zone microbial diversity did not relate with SMF. Random forest analysis identified several Ascomycota taxa with preference over marine environment as strong predictors of SMF. Taken together, our study lays the basis for a better understanding on the relationships between belowground microbial diversity and soil functions in coastal ecosystems.


Assuntos
Microbiota , Áreas Alagadas , Ecossistema , Fungos , Solo , Microbiologia do Solo
4.
Sci Total Environ ; 779: 146268, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33744583

RESUMO

Constructed wetlands (CWs) have been regarded as efficient technologies for both wastewater treatment and reuse of water resources. Most studies on CW treatment efficiency are limited to a short-term perspective, and there are still many unknowns about the long-term performance of CWs. Here we evaluated the performance of an integrated CW that has been in operation for more than ten years. The average removal rates of TN and TP were maintained at 53.6% and 67.3% over 10 years, respectively. The annual mass reductions in TN and TP reached 937.5 kg ha-1 yr-1 and 303.2 kg ha-1 yr-1, respectively. In addition, TN removal rate was significantly higher in summer and autumn than those in spring, yet there was no seasonal difference in TP removal. The bacterial richness and diversity in summer and autumn were higher than those in spring. TN and TOC not only determine the bacterial community structure, but also affect the removal efficiency of CW. Denitrification and dephosphorization microorganisms were enriched and accounted for a considerable proportion (21.14-52.85%) in the bacterial community. In addition, the relative abundance of Pseudomonas was significantly positively related with the rate of TN and TP removal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...